skip to main content


Search for: All records

Creators/Authors contains: "Levine, Paul A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Water stress regulates land‐atmosphere carbon dioxide (CO2) exchanges in the tropics; however, its role remains poorly characterized due to the confounding roles of radiation, temperature and canopy dynamics. In particular, uncertainty stems from the relative roles of plant‐available water (supply) and atmospheric water vapor deficit (demand) as mechanistic drivers of photosynthetic carbon (C) uptake variability. Using satellite measurements of gravity, CO2and fluorescence to constrain a mechanistic carbon‐water cycle model from 2001 to 2018, we found that the interannual variability (IAV) of water stress on photosynthetic C uptake was 52% greater than the combined effects of other factors. Surprisingly, the dominance of water stress on C uptake IAV was greater in the wet tropics (94%) than in the dry tropics (26%). Plant‐available water supply and atmospheric demand both contributed to the IAV of water stress on photosynthetic C uptake across the tropics, but the IAV of demand effects was 21% greater than the IAV of supply effects (33% greater in the wet tropics and 6% greater in the dry tropics). We found that the IAV of water stress on C uptake was 24% greater than the IAV of the combination of other factors in the net land‐atmosphere C sink in the whole tropics, 26% greater in the wet tropics, and 7% greater in the dry tropics. Given the recent trends in tropical precipitation and atmospheric humidity, our findings indicate that water stress——from both supply and demand——will likely dominate the climate response of land C sink across tropical ecosystems in the coming decades.

     
    more » « less
    Free, publicly-accessible full text available December 19, 2024
  2. null (Ed.)
  3. Abstract

    Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

     
    more » « less
  4. Abstract. The terrestrial carbon cycle plays a critical role in modulating the interactions of climate with the Earth system, but different models often make vastly different predictions of its behavior. Efforts to reduce model uncertainty have commonly focused on model structure, namely by introducing additional processes and increasing structural complexity. However, the extent to which increased structural complexity can directly improve predictive skill is unclear. While adding processes may improve realism, the resulting models are often encumbered by a greater number of poorly determined or over-generalized parameters. To guide efficient model development, here we map the theoretical relationship between model complexity and predictive skill. To do so, we developed 16 structurally distinct carbon cycle models spanning an axis of complexity and incorporated them into a model–data fusion system. We calibrated each model at six globally distributed eddy covariance sites with long observation time series and under 42 data scenarios that resulted in different degrees of parameter uncertainty. For each combination of site, data scenario, and model, we then predicted net ecosystem exchange (NEE) and leaf area index (LAI) for validation against independent local site data. Though the maximum model complexity we evaluated is lower than most traditional terrestrial biosphere models, the complexity range we explored provides universal insight into the inter-relationship between structural uncertainty, parametric uncertainty, and model forecast skill. Specifically, increased complexity only improves forecast skill if parameters are adequately informed (e.g., when NEE observations are used for calibration). Otherwise, increased complexity can degrade skill and an intermediate-complexity model is optimal. This finding remains consistent regardless of whether NEE or LAI is predicted. Our COMPLexity EXperiment (COMPLEX) highlights the importance of robust observation-based parameterization for land surface modeling and suggests that data characterizing net carbon fluxes will be key to improving decadal predictions of high-dimensional terrestrial biosphere models. 
    more » « less